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An alternative formulation of temperature diffuse scattering theory is described. The result is in terms 
of the mean atomic displacements rather than the usual normal mode representation. The theory leads 
to a direct relation between first and second order diffuse intensity which, by iteration, allows for a cor- 
rection for the second order contribution without approximation. It seems likely that this theory should 
be useful for highly anharmonic thermal motion. 

Introduction 

The usual formulation of the diffraction theory for 
thermal motion in crystals is in terms of the normal 
modes of the lattice, the Debye-Waller factor and the 
diffuse intensity being related to the average states of 
excitation of these modes of motion (James, 1965). We 
here offer an alternative formulation of that theory, 
entirely in terms of the mean atomic displacements. 
The theory leads to direct relations among first and 
higher order diffuse scattering components, so that 
with the harmonic model, higher order diffuse inten- 
sity components may be corrected for exactly. Other 
attempts to account for this component of the diffuse 
scattering have all invoked a variety of approximations 
(Olmer, 1948; Joynson, 1954; Jacobsen, 1955; Walker, 
1953; Paskin, 1958,1959; Borie, 1961). It seems possi- 
ble that this formulation of diffuse scattering theory 
may be useful for crystals with large anharmonic 
effects. 

Diffraction theory 

For simplicity consider a crystal for which all atoms 
are identical, with one atom per primitive unit cell. 
Then according to kinematic diffraction theory, the in- 
tensity in electron units is given by 

I = f  2 ~ ~ exp [ik. Rz, d (exp [ik. (6~o-fiq)]). 
P q 

The vectors R~0q are between atomic sites p and q in 
the average lattice, and the small dynamic displace- 
ments ~:o are those resulting from thermal motion. The 
average indicated is over time. The vector k is 2re times 
the diffraction vector. 

In the harmonic approximation this expression may 
be written 

I = f  2 ~ ~, exp [ik. R~,d exp [ -½({k .  (fi,,_6q)}2)] 
P q 

= NfZ +f2 exp [ -  ( k .  6)2)1 

× y. ~ exp Ilk. R.d exp 0'.  ~: ' .  ~) .  
P # q  

* Research sponsored by the U.S. Atomic Energy Commis- 
sion under contract with the Union Carbide Corporation. 

In the above N is the total number of atoms in the crys- 
tal, and ( (k .  6) 2) is the Debye-Waller factor 2M. With 
the last exponential expanded, this expression may be 
written 

I = f  2 exp [ -  2M] ~ ~ exp [ik. R:0d +f2 exp [ -  2M] 
P q 

o o  

~. ~ ~ exp [ik. R:~d(k. fi~k. fiq)Z/l!. (1) 
p q 1=1 

The first double sum gives the usual sharp but weakened 
Bragg maxima and is of no further interest. The second 
summation, I~, ,  is the diffuse intensity. We may write 

o o  

Imp= ~ IT:Or 
1=1 

where 

I~D~ =f2 exp [-2M] E ~ (k. ~#.  ~)~ t, q l! exp [ik. R~d.  

The value of l identifies the order of the diffuse inten- 
sity component. 

Consider the first order temperature diffuse scatter- 
ing: 

ITm =f2 exp [ -  2M] ~ ~ <k. ~ivk. ~iq> exp [ik. Rvq]. 
P q 

(2) 

Let the vector k be written in terms of the vectors bn 
reciprocal to the unit cell vectors an: 

k = 2~r(hlbl + h2b2 + h3b3) • 

We may write for 6r 

~ = x~al + Y2oa2 + z:oa3, 

where xr, y~, and zr are small pure numbers and func- 
tions of time. 

Then 
k .  6~o = 2x(hlxlo + h2y~ + h3z~) 

and 

(k  . g~ok . ~o) = 4n2{h~(xrxq) + h~(y~yq) + h](zrza) 
+ hxhz(x~y~t + y~xq) + hzh3 (y~zft 
+z~yq)+h3hl(z~xa+x~zq) } . (3) 
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For diffuse scattering the double sum of equation (2) 
may be written as N times a single sum. With the ex- 
pression for ( k .  6 r k .  6~) given by equation (3) sub- 
stituted into (2), there results 

IwDa/(Nf2exp [ - 2 M ] )  =h~ ~ 4rc2(xloxq) 
p 

x exp [ik. R:vq] + h~ ~ 4rc2(y~yq) exp [ik. R:oq] 
p 

+ hi ~, 4z~2(zrz~t) exp [ik. R~o~] 
p 

+ h~h2 ~ 4zY'(x~oyq + y~oxq) exp [ik. R~]  
p 

+ hzh3 ~ 4rcZ(y~z~ + z~y~) exp [ik. R~]  
p 

--h3hl ~ 4rc2(z~xq + x~zq) exp [ik.  R ~ ] .  
p 

Clearly equation (4) gives ITDa in terms of the sum of 
a group of Fourier series, each one multiplied by a 
factor quadratic in h~. Let the periodic function 
B(hbh2,h3) be defined by 

B(hl,h2,h3)= ~ 4zr,2(x~xq) exp [ik. R~q] 
p 

and 

G(hl,h2,h3)= ~. 47r2(xryq+ ypxq) exp [ik.  R~d .  
p 

Then, if the crystal is cubic, equation (4) may be written 
in terms of the functions B and G" 

ITD1/(Nf 2 exp [-- 2M])=h~B(hl,h2,ha) 

+ h~,B(h 2, h 3, hi) + h]B(h3, hxh~, ) + hxh2G(hx, h2, h3) 

+ hzh3G(hz, h3, hi) + h3hlG(h3, hi, hz) • 

All of the information to be recovered from the diffuse 
intensity distribution is contained in the Fourier co- 
efficients of B and G. They may be recovered by first 
obtaining the functions B and G from the experimen- 
tal data: 

Let I '=ITD1/(Nf z exp [ - 2 M ] )  and define an oper- 
ator A 1 to be A lI'(hlh2h3) = I'(hlh2h3) - l '(hl - 1, h2, h3). 
Then from equation (4), because of the periodic char- 
acter of B and G: 

A 11' = (2hl - 1)B(hlh2h3) + h2G(hlh2h3), (6) 
and 

A~I' = 2B(hlhzh3) . 

To recover G, let AzI'(hlhzh3) = I'(hlhzh3) - 
I ' (h l ,hz-1 ,  h3). Then from equation (5) 

A2A~I'= G(hlhzh3) • 

The operators An to be applied to the measurements 
are ideally suited to be performed on a computer. 

Now consider second order temperature diffuse scat- 
tering: 

ITm =fz  exp [ -  2M] Y ~. (k .  6~k.  ~iq) 2 p q 2 exp [ik.  R~q]. 

(7) 
The quantity ( k .  6~ok. 6q)z may be readily obtained 
from equation (3). The square of that expression will 
contain terms like 

16rc4h~hz(x~x~) (xI~yq + yl)x~) . 

The corresponding contribution to Iwm/(Nf  2 
exp [ - 2 M ] )  is 

h]h2~ (xloxq) (xl)yqq- y~xq) exp [ik.  Rpq] 
p 

(4) =h]h2P(hx, th, h3). (8) 

Since a periodic function P whose Fourier coefficients 
are the product of those of two other functions, B and 
G, is simply the convolute of the two functions. With 
the notation 

B(hlh2h3)*G(hxh2h3) 

1'i'1 = B(h~hlh'3)G(h ~ - hl,h i -  h2,h' 3 - ha) 
h i = 0  h2=0 h3=0 

× dh'ldh'2dh' 3 

we may write from equation (8) 

P(hlhzh3) = B(hlh2h3).G(hlhzh3) . 

Introduce the notation that Bn=B(hnhn+lhn+2) and 
Gn = G(hnhn+lhn+2), the subscripts being modulo three. 
Then it is clear that if we square equation (3), and sub- 
stitute the result into equation (7) to obtain ITDz we 
obtain 

3 3 

2ITD2/(NfZexp [ -2M])  = ~ ~ h~h~Bm*Bn 
m = l  n = l  

( 5 )  3 3 

+ 
m = l  n = l  

3 3 
+ 2 ~  ~ 2 h~h,,h,,+iBm*G,, . (9) 

m + l  n + l  

Discussion 

Both first and second order temperature diffuse scat- 
tering are expressed in terms of two basic periodic func- 
tions as given by equations (5) and (9). The Fourier 
coefficients of these functions are related to the mean 
atomic displacements and contain the basic informa- 
tion which one may recover from a set of diffuse scat- 
tering data. The separation technique described here 
is closely related to one (Borie& Sparks, 1965) which 
has been successfully used to separate diffuse intensity 
into its components for disordered solid solutions. The 
functions may be recovered directly from the first order 
temperature diffuse scattering, and they may then be 
used to compute the second order contribution. If this 
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procedure is followed with the initial assumption that 
all of the scattering is first order, the resultant functions 
B and G may be used to compute from equation (9) 
ITD2. This may then be subtracted from the measure- 
ments to obtain better values of the first order diffuse 
intensity. Iteration of this procedure may be followed 
to self-consistency, yielding values of first and second 
order temperature diffuse scattering to any precision 
desired. Expressions similar to, but more involved than, 
equation (9) may clearly be developed to obtain ex- 
pressions for higher order diffuse components of the 
diffraction pattern if that is necessary. Though the day 
is not long past when the computation involved in 
equation (9) would have appeared formidable, the 
above described iteration procedure may be carried 
out very easily with a modern computer. 

If the usual harmonic representation of the atomic 
displacements in terms of superposed waves is incor- 
porated into equations (2) and (7), they become James's 
(1965) equation (5.45) for ITD1 and Walker's (1953) 
equation (4) for ITD2. However, though the harmonic 
model is used, the usual normal mode representation 
of the diffuse intensity is not. Since the result for ITDI 

is not dependent on the harmonic approximation, this 
representation of first order intensity in terms of the 
mean atomic displacements is valid even if there are 
large anharmonic contributions so that the usual theory 
does not apply. Without the harmonic approximation 
the simple representation of ITD2 in terms of the func- 
tions B and G given by equation (9) no longer holds. 
Even in that case the above described method for cor- 
rection for ITD2 may still be an acceptable approxi- 
mation. 
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Monoelinie-Tetragonal Phase Transition in Zireonia: 
Mechanism, Pretransformation and Coexistence 
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The high temperature X-ray diffraction study of the monoclinic-tetragonal phase transition in ZrO2 
showed that it is spread over a temperature range 930-1220°C. Anomalous intensity changes are ob- 
served in the pretransformation region 930-1100°C. Coexistence of phases through hybrid crystal for- 
mation in the region 1100-1220 °C and the mechanism of transition are discussed. The orientation rela- 
tionship between the monoclinic (m) and the tetragonal (t) crystal structures consists in the parallelism 
of the (100)m plane to (110)~ and of the bm axis to the et axis. A drastic change in a small temperature 
range during the tetragonal-monoclinic transition is interpreted as a cooperative change in both short 
and long range interactions. The large thermal hysteresis is attributed to the difference in the mechanism 
of transition during heating and cooling. 

Introduction 

The monoclinic-tetragonal transition in ZrO2 has been 
extensively investigated (Baun, 1963; Cypres, Wollast 
& Raueq, 1963; Grain & Garvie, 1965; Hinz & Dietzel, 
1962; Sukharevskii, Alapin & Gavrish, 1964; Whitney, 
1962; Wolten, 1963, 1964) using differential thermal 
analysis, dilatometry, high pressure studies and X-ray 
diffractometry. Considerable disagreement among 
different investigators prevails regarding the trans- 
formation temperature and thermal hysteresis. The 
disagreement may be due to: (i) the dynamic study of 
the transition and (ii) the type of impurities present. 

Wolten (1963, 1964) described the monoclinic-tetra- 
gonal transformation in ZrO2 to be diffusionless and 
likened it to the martensitic type of transformation 
observed in metallic and alloy systems. Athermal 
kinetics, thermal hysteresis and the shearing mecha- 
nism due to the atomic displacements during the trans- 
formation are characteristics of the martensitic type of 
transformation. The electron microscopic studies of 
Bailey (1964) and metallographic observations by 
Fehrenbacher & Jacobson (1965) support Wolten's 
work and attribute a shearing mechanism to the atomic 
movements during the phase change. Sukharevskii et 
al. (1964) associate an isothermal component in the 


